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Seepage flow in unconfined aquifers 
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(Received 3 January 1975) 

The paper concerns one- and two-dimensional models of steady seepage flow in 
unconfined aquifers and the relationship between them. The first part gives a new 
proof of Charnyi’s result that one- and two-dimensional theory yield the same 
value for the flow rate in a horizontal aquifer or porous bed between vertical ends 
and shows the extent to which it can be generalized to non-uniform or anisotropic 
media. The second part solves the highly two-dimensional problem of flow from 
a line source (line of springs) in an otherwise impermeable, sloping stratum and 
compares the result with the predictions of a one-dimensional Dupuit-Pavlovsky 
approach. Confirmatory experiments using the Hele $haw analogue of seepage 
flow are also reported. 

1. Introduction 
Seepage flow theory is generally based on Darcy’s law 

v = -kgrad(y+plpg), (1) 

in which v is the effective velocity, k is the permeability of the porous medium for 
the fluid in question, y is the height above some datum level, p is the fluid pressure 
(taken as the excess above atmospheric), p is the fluid density and g is the accelera- 
tion due to gravity. In steady flow it is normally acceptable to set divv = 0 in 
recognition of liquid incompressibility. 

In  confined aquifers or equivalent systems, where the boundaries of the region 
occupied by liquid are known ab initio, to solve the equations is relatively simple. 
In unconfined aquifers, however, the liquid has to be treated as having an 
unknown upper boundary or free surface within the porous medium, an idealiza- 
tion of the somewhat blurred water table that occurs between fully saturated and 
relatively dry ground under the agency of surface tension and other effects. This 
free surface makes the problem much more intractable and progress is often best 
made by reducing the number of dimensions from three to two or even to one. 

This paper is concerned with steady seepage flows which are truly two- 
dimensional, all conditions being independent of one horizontal space co-ordinate 
( z ) ,  and with the question as to whether they can be adequately described by a 
one-dimensional or ‘hydraulic’ approach, in which quantities are treated as 
depending only on the horizontal co-ordinate x. This hydraulic approach is of 
some antiquity, going back to Dupuit (1863). It is nevertheless still very useful, 
particularly in relation to unsteady flows, where little progress has been made 
with exact two- or three-dimensional theory. 
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L-- I-- 
F I G ~ T E  1. Seepage flow through a porous bed with vertical sides and 

a horizontal base. 

The paper considers two different two-dimensional problems, and explores the 
applicability of one-dimensional theory. The first is a problem which Dupuit 
treat'ed, concerning the flow through a porous bed on a horizontal impermeable 
base between two vertical sides adjoining pools of free liquid of different depth. 
As Charnyi (1951) showed, two-dimensional theory gives t,he same flow rate as 
Dupuit's theory, even though his model is very bad in detail. We give a new, 
briefer proof of this result and explore the limited scope for generalization to 
situat)ions with non-uniform permeability, etc. 

The second problem concerns the flow in an unconfined aquifer above an 
inclined impermeable layer in which there is a horizontal line source (e.g. a line 
of springs). This too is a highly two-dimensional flow. A simple one-dimensional 
model is set up and compared with the exact two-dimensional solution found by 
the inverse hodograph method and conformal transformation. A further com- 
parison is provided by experiments performed on this configuration with the aid 
of the Hele Shaw analogy. 

2. The Dupuit-Charnyi problem 
The problem of steady flow in a vertical-sided porous bed on a horizontal 

impermeable base of length 1 between two pools of different depths h, and h,, as 
shown in figure 1,  was first solved, on a one-dimensional, 'hydraulic ' basis, by 
Dupuit (1863), who took the free surface to  be a curve (the Dupuit parabola) 
stretching from A to B. Dupuit's formula for the volumetric flow rate Q per unit 
thickness was 

Q = k(h: - h;)/21. 

Muskat (1937, pp. 316, 378) discussed the question of whether this result, based 
on the crude hydraulic model, could be correct despite the fact that the 
free surface of the liquid does not in practice encounter the downstream 
side at the level B of the downstream pool but emerges a t  a higher point C .  
BC is a seepage face from which liquid emerges and on which the pressure is 
atmospheric. 
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Charnyi (1951) showed that (2) agreed with two-dimensional theory (see for 
instance Polubarinova-Kochina 1962, chap. 7).  Other authors, e.g. Hantush 
(1962), have also presented proofs. It is possible however to prove the result in 
a rather briefer manner which also clearly reveals the extent to which this simple 
result concerning a complicated two-dimensional problem can be generalized to 
allow for limited non-uniformity of the aquifer. 

The horizontal component of the basic flow equation ( 1 )  is 

We can integrate this equation over the domain ACDE: 

ax v,dy=-- IC j-dysgdx, s s  P9 (3) 

in which a different order of integration has been used on the two sides. But 1 vxdy = Q at each value of x and 1 (aplax) dx = p ,  -pl at  each value of y ,  where 
pl = pressure on A E  andp, = pressure on ACBD (zero, except on BD). Thus (3) 
becomes 

since p1 and p, are given by hydrostatics in the form p = pg(h - y ) .  The Dupuit 
result (2) follows immediately. 

This proof and result can be generalized to a limited extent by allowing the 
permeability to be anisotropic (but with principal directions vertical and hori- 
zontal) with the horizontal permeability k, non-uniform but given by a function 
of the product form kX = X(x) Y ( y ) .  This of course includes the slightly more 
likely cases where kz is a function of just one of x and y ,  owing to horizontal or 
vertical stratification. Such cases were treated by Irmay (1967) by longer 
methods. We can then write 

1 aP vx- -- Y -  x- pg ax 

and integrate over the domain ACDE to get 

which gives 

which can be evaluated, given X(x) and Y ( y ) .  
This approach also clearly reveals why further exact generalization is not 

possible. If the principal directions of the permeability, if anisotropic, are 
inclined, vx depends also on ap/ay and the integral on the right-hand side involves 
knowledge of p along the base DE, for which no simple expression is available. 
The same consideration precludes generalization to cases where the base of the 
bed is inclined, as the relatively unsuccessful attempts at  generalization of 
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FIGURE 2. Seepage flow from a line source in the inclined base of an 
unconfined aquifer. The z plane. 

J'rmay (1967) reveal. Equally i t  is obvious that the upstream and downstream 
sides of the bed must be straight and vertical, for otherwise / v5dy  would not 
equal Q for those vertical intercepts through the bed which intersected a sloping 
side, and the method would fail. 

Tho anisotropic case includes t,he case kz < kv (where kg is the vertical permea- 
bility), for which the Dupuit model is exact and the free surface is the Dupuit 
parabola. The vertical pressure distribution is hydrostatic, which is essentially 
t,he Dupuit assumption. One model of this situat'ion is a series of vertical porous 
sheets with pools between. 

Also included is the case kz B k,, where all streamlines are horizontal and C 
rises to the level of A .  The bed behaves like a st.ack of horizontal capillary tubes. 
The flow along the uppermost streamlines will be very slight because of the small 
fall in head. This case reveals in its most extreme form the main reason why the 
Dupuit formula can work so well. The Dupuit model is self-compensating; it 
underestimates the depth available for flow a t  each vertical cross-section, but 
overestimates the horizontal velocities because it overestimates the fall in head 
along the streamlines. 

3. Flow from a line of springs on a slope 
The success of the Dupuit-type hydraulic model in predicting behaviour in 

what is essentially a two-dimensional problem in the previous section prompts 
the question as to  whether such models can adequately describe other flows that 
are essentially two-dimensional. Figure 2 shows such a problem, which is of some 
practical interest, e.g. in establishing the extent of water percolation into soil 
overlying sloping rock. 

Point A represents a horizontal line of buried springs in an otherwise im- 
permeable, inclined, plane stratum, such as might occur where a thin confined 
aquifer Z A  ends. The liquid emerges into an unconfined, isotropic and uniform 
aquifer and ultimately Rows uniformly downhill a t  a depth H and effective 
velocity k sin a, a being the inclination of the stratum. Inevitably the liquid baclrs 
up the slope through some distance AB, equal to L, say, above the line of springs. 
The main problem is to determine L and H and the relation between them and 
the inclination a. The flow near the springs is highly two-dimensional; neverthe- 
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FIGURE 3. The one-dimensional, hydraulic model. 

less we shall explore whether it can be meaningfully modelled in the ‘hydraulic ’ 
manner, before solving the problem exactly, both analytically and experi- 
mentally by means of the Hele Shaw analogue. 

The extension of Dupuit theory to inclined aquifers was done in 1931 by 
Pavlovsky (1956) on the assumption that the inclination of the base stratum and 
of all streamlines was small. The velocity was treated as virtually uniform over 
each vertical section. Pavlovsky’s solutions reveal that the depth of liquid can 
only asymptote to a steady value in the uphill direction, a key point which is 
taken further below. See, for instance, Harr (1962, p. 44). 

The line of springs in figure 2, in order to be modelled in a manner consistent 
with the Dupuit-Pavlovslcy approach, has to be replaced by an imaginary 
vertical plane AC of sources distributed uniformly over the full depth of liquid 
in the aquifer as in figure 3. All the flow must go to the right as there is no outlet 
to the left, where the fluid must be a t  rest, having therefore a horizontal free 
surface CB. As regards the downstream behaviour, a free-surface curve such &s 
CE or CF which asymptotes to a steady depth is precluded by the property of 
Pavlovsky solutions already referred to. The only possibility is the immediate 
onset of the steady depth H as shown by the free-surface line CD. (Whether H 
is measured vertically or normal to the inclined base is immaterial in this approxi- 
mation.) The free surface BCD is therefore the Dupuit-Pavlovsky-style solution 
of this problem. The velocity of the fluid to the right of A is k sina, or k a  since a is 
small, and so Q = kHa. The ratio of the back-up distance L to the steady depth H 

L/H = coseca = l/a, is given by 

since CL is small. We see that the hydraulic model yieldsa very simple, if apparently 
crude solution to the problem. The next step is to solve the problem exactly and 
make a comparison. 

4. Two-dimensional theory 
We take the origin a t  the source A in figure 2, which is the z plane, where 

z = z f i y .  The problem will be solved by complex-variable methods using a 
velocity potential $ = -k(y+p/pg), such that v = grad#, and a conjugate 
stream function $, the flow being incompressible. The complex potential w is 
r$ + i$ and is an analytic function of z, and vice versa. 

The boundary conditions are that $ = 0, say, along AB and the free surface 
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(0)  (b) 

FIQURE 4. (a )  The inverse hodograpli (dz/dw) plane and ( b )  a transformation 
of it, the 5 plane. 

BFD, and $ = - Q along B E .  ( F  is a point that will be discussed later.) + ranges 
from - 00 at A (as is usual for sources) to + co a t  DE, far downstream, and will be 
taken as zero at  B. As the free surface is not determined ab initio, a further condi- 
tion there is required, namely p = 0 ( p  being the gauge pressure) or + + ky = 0. 
Hence, along the free surface, with $ constant, we have 

Thus, on the free surface, 

Im  (dzldw) = - l l k ,  a constant. (4) 

This fact provides the key to  the success of the inverse hodograpli method for 
solving unconfined aquifer problems, because the free surface, unknown in the 
z plane, becomes a known line in the dzldw plane. Then dxldw, which is a function 
of w, can be related to w by conformal transformation. Integration then gives 
z in terms of w and the problem is solved. The relation between dzldw and the 
velocity components (vx, wv) is 

The position vector for dzldw in the dzldw plane (figure 4a) is therefore parallel 
to the corresponding velocity vector. 

We shall use the same letters to  denote corresponding points and boundaries 
on the physical ( 5 )  plane, on the dzldw plane and on transformations of that plane. 
Then BFD is part of the line Im (dzldw) = - l/k. Along BAE, which is a stream- 
line, Re (dz ldw)  v, 

Im (dzldw) vy - cot a, - _ - =  

and so BAE is also a line of slope a through the origin in the dzldzo plane. At the 
source A ,  the velocity tends to infinity and dx/dw-+ 0, i.e. A is the origin in the 
clsldzu plane. B is a stagnation point where ldz/dwl--+oo and on the dzldw plane is 
a range of points at infinity, for the velocity direction is indeterminate there. 
These facts suffice to  define the region of interest on the dzldw plane, for the 
velocities out of the source will be generally upwards and/or rightwards and then 
(5) shows that dzldw will lie in the region shown shaded in figure 4 (a). BFD is that 
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part of the line defined by (4) that lies to the right of BAE.  On this inverse hodo- 
graph plane the points D and E coincide, for the velocities a t  all points far down- 
stream are the same. 

20 is determined as a function of dzldw by the fact that $ = 0 along AB and BD 
and 9 = -&along A E ,  while $ + - m a t  the source A and $++a a t  the ‘sink’ 
DIE. Progress is best made by a conformal transformation of the relevant part 
of the dzldw plane into the upper half of the 5 plane shown in figure 4 (6) .  The 
required transformation, which expands the angle ADB from 7~ - a to 7~ and puts 
the 5 origin a t  DIE is 

dz e-ia 7T-a 
where n = - p = 

dw ksina’ n - )  

DIE being the point where dzldw = ec ia / (k  sin a) .  The source A is now a t  6 = C0, 
where 

Since B is now the complete upper semicircle a t  infinity in figure 4 ( b )  and @ = 0 
there, the solution for w in the upper half-plane is merely that due to a source 
a t  A and a sink at DIE, namely 

- c,, = (k sin 

7T 
w =  Q - (10g(~-~ , , ) -10g~}= 

77 

Hence 5 = - co/(enw/Q - 1) 

and + e-ia 
dz 1 1 

As we have chosen to make # = 0 a t  B, the point where z = - L e-ie, then w = 0 
there also and (6) integrates to 

I n  order to find L, the back-up distance, we note that w = # along AB and is 
negative and real. Thus enwlQ < 1 and on A B  

1 e-ia 

(1 - eni /Q)n’  

and 

Note that this equation correctly locates z in the second quadrant with argument 
7r - a, for the term in square brackets is real and positive. We may find L by 
setting z = 0 and letting # + - m a t  A ,  with the result that 

in which $is Euler’s ‘psi ’ function and Cis Euler’s constant, Values are tabulated 
in Jahnke, Emde & Losch (1960, p. 15). $ + C is easily evaluated for a = an, Qn, 
etc. 
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aln 
FIGURE 5. Back-up dist,ance ratio LIH as a function of inclination. The curve is 

theoretical, the points experimental. 

Along the free surface, w = 9, rising from 0 at B to + 00 at D.  Then the integral 
in (7) is real and the imaginary part of (7)  confirms that $ + ky  = constant. It can 
also be easily deduced that the thickness of the liquid layer normal to the sloping 
base (h in figure 2) is simply expressible as the integral 

Q + d(n4lQ) 
h = A j0 (en$\&- 1)n* 

As 9 --f co, the integral takes the simple value n/sin a, which is consistent with the 
uniform terminal velocity k sin a down the slope. 

The most obvious simple parameter that characterizes the two-dimensional 
flow in the unconfined aquifer is the ratio of the back-up distance L to the ultimate 
depth H of the flow, measured normal to the bed, which equals Q/k  sin a. The 
result is 

This quantity is plotted as a function of a/n in figure 5. 
The case a = 4;. may also be regarded as the double-sided flow from a line 

source such as a leaking duct buried in a virtually unlimited porous bed, i.e. with 
the stratum BAE, now vertical, replaced by a plane of symmetry. This is a 
problem which has been solved before (see, for instance, Polubarinova-Kochina 
1962, p. 181). In  this case, a t  the free surface, 

x = (2&/kr )  tan-1 (en+'& - l ) t ,  9 + k y  = k L  

and L-y = (2Q/krr) log sec ( k n 4 2 Q ) .  
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This solution can obviously also be adapted to solving the problem of two- 
dimensional %ow into an inclined con$ned aquifer of small uniform thickness 
from a point source, the x, y plane then being that of the aquifer. k must be 
replaced by k sin p, where p is the slope of the aquifer. 

The three-dimensional problem of flow into an inclined unconfined aquifer 
from a point source has not been solved. Approximate solutions for the axisym- 
metric case of this type, where a = 90" and the stratum, now vertical, may be 
replaced by a plane of symmetry, have been discussed by Polubarinova-Kochina 
(1962, pp. 395et seq.). 

Although for general values of a the values of the integral giving the shape of 
the free surface are not readily available, the particular point F i n  figure 2, where 
n$/Q = log 2, can be more fully documented in terms of the standard function 
/ 3 ( a / ~ ) ,  where p is defined by 

P ( P )  = W + ( P  + 1)) - I4iiP)l. 
The co-ordinates of F are such that 

1 (9) 
y = L sin a - (&/kn) log 2 

and ( ~ T / Q )  x sin a = p(a/n) - cos a[ - {$(a/n) + C> -log 21.j 

It is shown later that dy/dx = - tan@ at F ,  i.e. F is the point where the free 
surface has tilted half-way towards its final inclination a. This locates it on 
figure 4 (a)  as the point on BD where LRAF is *a. We refer again to F later. 

5. A comparison with experiment 
The well-known Hele Shaw analogy provides the most convenient technique 

for performing experiments on two-dimensional seepage flow in unconfined 
aquifers. A rectangular glass-sided Hele Shaw tank with a gap of 0.5mm and 
other dimensions 110 x 700mm was employed in the experiments reported here. 
The source A was a transverse inlet pipe of diameter 5 mm, centred on the lower 
edge of one of the glass plates, a t  a distance of 230 mm from the upstream corner. 
The inclination a of the tank could be varied from 0 to go", measured with a 
sensitive clinometer. It was found to be a relatively simple matter to achieve 
steady flow, with the downstream flow thickness asymptoting to a virtually 
steady value H after a downhill distance of about 3H from the source. This rose 
to about 6H as a approached 90'. Only at  the highest flow rates was there any 
doubt whether the asymptotic state had been reached within the apparatus. As 
low values of a were approached, the change in slope of the free surface was 
observed to become increasingly abrupt, as suggested by the Dupuit-Pavlovsky 
model shown in figure 3. The liquid used was methylated spirits, whose surface- 
tension behaviour is much less fickle than that of water. Unlike some unconfined 
aquifer simulations with the Hele Shaw analogue, this one is such that surface 
tension has little deleterious effect although at  values of a greater than 60' the 
location of the point B became somewhat indeterminate because surface tension 
caused a small rise just as the free surface finally approached the 'stratum' BAE. 
This final rise was ignored in estimating the position of B.  
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FIGURE 6. Ult,imate depth H plotted against back-up distance for various 
inclinations, measured in the Hele Shaw experiments. 

The quantities L and H were measured to an accuracy of 0.5mm by visual 
observation through the glass. The results are presented in figure 6 as graphs of H 
against L for various inclinations a. The graphs show H to be proportional to L 
within the accuracy expected, except for the case a = 90". It became evident that 
to do fully satisfactory experiments on this case it would be necessary to simulate 
the donble-sided flow mentioned in 3 4, in order to eliminate the surface-tension 
rise a t  B. At the highest flow rates, with a: = go", the asymptotic value o f H  was 
not reached within the apparatus. Even a t  90" the free surface was completely 
stable, but when ct exceeded go", a beautiful nonlinear wavelike convective 
instability, with a strongly preferred wavelength, set in (see figure 7, plate 1). 
This does not represent a phenomenon that would occur with groundwater, 
however. 

The slopes of the best straight lines in figure 6 yield experimental values for 
LIH,  which are plotted on figure 5. The agreement with theory is very satis- 
factory. 

The Reynolds number of the flow based on gap width and the properties of 
methylated spirits is 

p2gd3sina/12p2 = 61 sina. 

This is sufficiently low to ensure the laminar flow on which the Hele Shaw analogy 
depends. The value of viscosity for the methylated spirits used was in fact 
deduced from measurements of flow rates in the apparatus (p = 1.06 x 10-3 in 
S.I. units). 
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6. A comparison with Dupuit-Pavlovsky theory 
The question remains as to how well the crude 'hydraulic ' model discussed in 

5 3 corresponds to the exact solution when a becomes small. We shall make use of 
hhe expansions 

- ($(P) + C )  = P-l- f;n"r, + O W )  (10) 

and p ( p )  = p-1- log 2 +&Zp + O(p2). (11) 

Combining (8) and (10) gives L / H  = a-l( 1 - &az.. .) and the result of the hydraulic 
approximation L/H = l/a is seen to be correct to second order, for small a. 
First-order errors might well have occurred. 

A more detailed check is provided by a consideration of the point F, referred 
to in 3 4. We shall examine its position relative to the point C, and take as our 
reference length scale the distance AC, which equals L sin a, or 1, say. The relation 
between Q, 1 and a is 

lk/Q = a-l{ 1 - &a2 + O(a3)}.  

Note that Q is O(a) for given 1. The position of F relative to C is given from 
(9)-( 11) by the relations 

a -- l - y  -- log2 = - (log2)(1+O(a2)) 
1 knl 77 

and hzsina/Q = $na+0(a2), x/E = $a(l +O(a)) .  

As a+ 0, with 1 constant, F tends in a regular manner to C, its equivalent in the 
Dupuit-Pavlovsky model. 

The slope of the free surface deduced from (7) with w = q5 (positive) is 

which changes from 0 to tan a as n+/Q rises from 0 at B to co at D. It equals tan $a 
when n$/Q = log2, a t  F, as remarked earlier. For small n$/Q we have the 
approximation 

k-ld$/dz  = sina(n$/Q)l-a'n. 

Integrating from B, where $ = O and x = xB, say, gives 

(n$/Q)"'" = (ka/Q) sin a (z - xB) + (z - xB)/L, 

if a is small and Q i a2Lk. This relation implies that, for a small, q5 hardly 
changes as x increases from xB until (x - xB)/L gets close to unity in the vicinity 
of C and F. Then n$/Q rises rapidly towards unity and the preceding approxima- 
tion fails. 

If q5 is constant, so is y, and the flat upstream surface predicted by the 
hydraulic model is confirmed. As q5 is the velocity potential, q5 constant a t  
constant y implies zero horizontal velocity. 

As n$/Q rises past unity, the strong exponential term in (12) causes dy/dx to 
undergo most of its change as n$/Q rises from to 3 say, as the point F (where 
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~rq51Q = 0.693) is passed. I n  this vicinity dq5ldx is of order k a  and so most of the 
change in dyldx occurs over a range of x values of order Qlka ,  i.e. of order 1. This 
confirms what was also apparent from the experiments, namely, that for small a, 
the swift transition from one straight part of the free surface to the other takes 
place over a horizontal distance of the same order as the depth of the layer. This 
is of course the zone where the flow is truly two-dimensional. Outside it the fluid 
is either virtually a t  rest or moving uniformly down the slope. 

To sum up this section, the one-dimensional hydraulic model is found to give 
acceptable predictions of the back-up distance and the shape of the free surface 
despite the fact that the flow is highly two-dimensional near the source. 

7. Final remarks 
The second problem is probably typical of truly two-dimensional problems 

that can be well modelled by one-dimensional theory provided that the inclina- 
tions of the base stratum and of the free surface are small. The first problem is 
probably unique in that there the one- and two-dimensional theories predict 
exactly the same flow rate (as distinct from agreeing asymptotically as the slope 
tends to  zero) for all inclinations of the free surface. It also offers unique scope 
for generalization to non-uniform or anistropic media. 
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